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Abstract. Langevin methods have proved useful in simulating lattice field theories of many 
kinds. These methods are essentially a practical realization of the stochastic quantization 
approach to quantum mechanical systems. In this paper we wish to show that the Langevin 
method is effective in calculations of non-relativistic quantum mechanical systems. Far a 
one-dimensional system a more conventional approach through the diagonalization of the 
Hamiltonian matrix using the method of Sturm sequencing is more efficient. However, in 
two and higher dimensions where the Hamiltonian is no longer tridiagonal the Langevin 
scheme is more efficient and accurate. It fallows therefore that Langevin methods may 
actually have a great deal to offer in quantum mechanical problems in high dimensions 
especially in c a m  where the potential doer not have spherical symmetry. 

1. Introduction 

In this paper we apply a second order Langevin [ 1-41 method with Fourier acceleration 
[SI to the computation of the energy levels of the anharmonic oscillator in one, two 
and three dimensions. We calculate the energies of the ground states and first excited 
states of these systems. In the one-dimensional case we compare the results with those 
of the more standard Sturm sequencing method for diagonalizing large matrices [6]. 
In higher dimensions the matrices become rapidly much larger and more complicated 
in structure. In these circumstances the diagonalization of the Hamiltonian becomes 
much less easy to bring about. The Langevin scheme is much less sensitive to the 
dimension of the system. It therefore becomes relatively more attractive for higher- 
dimensional problems, especially where the potential does not have spherical symmetry 
such as for the case of a particle in a crystalline environment. The Langevin scheme 
and the associated path-integral formalism [7] is of course closely related to probabilis- 
tic methods of analysing quantum mechanics [8]. 

We explain the underlying path-integral formalism together with the discrete version 
required for the purposes of numerical simulation in section 2. The Fourier accelerated 
Langevin method for evaluating the expectation values of relevant observahles is 
described in section 3 and its extension by means of slave equations in section 4. An 
outline of the Sturm sequencing method as it applies to the present problem is described 
in section 5 and the numerical details of the simulation are given briefly in section 6. 
The results of the numerical simulations are presented in section 7. We consider the 
significance of the results in a concluding section. 
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2. Theory 

We wish to compute the ground state energy E,  and the gap PE = E ,  - Eo between 
the ground state and the first excited state. We accomplish this by computing the 
partition function and the time correlation function of appropriate operators. The 
partition function Z for a quantum mechanical system at temperature T-' is given by 

S M Catterall er al 

z=xe-+T. (1) 

When T>>AE-' the partition function Z is dominated by the contribution from the 
ground state. For T sufficiently large we have 

a 
E ,=  --logZ 

aT 

For the systems with which we shall be dealing a correlation function sensitive to the 
energy gap P E  is 

Gab([ )  =(X,,(f)Xh(O))c = (X,(f)Xh(O))-(X.(f))(Xb(O)) (3 )  

where x.(r) is the ath component of the particle position operator at (Euclidean) time 
f and (. . .) indicates the thermal average of the enclosed quantity. For T sufficiently 
large and Oc< t<< T we have for our systems 

Gab(f)aSah e?E'. (4) 

The imaginary-time Feynman path-integral formula for the partition function is [7] 

Z =  a x ( t ) e P  (5) J 
where the paths {x(t)) over which the integration is carried out are periodic, satisfying 
the boundary condition x( T )  = x(O), and S is the imaginary-time action for a particle 
of mass m moving in a potential V ( x ) .  It is given by 

S =  ~ o T d t ( j m i 2 +  V ( x ) ) .  (6) 

Expectation values relevant to the correlation function are given by the path integral 
with an appropriately modified integrand, for example 

(x.(t)xh(0)) =- % ( t )  e-sx.( t )xb(o) .  (7) Z ' I  
In our simulation we make use of a discrete approximation to the path integral. 

The time interval Tis divided into N segments of length E = T/N and correspondingly 
the path x ( t )  is approximated by a sequence of points x, = x ( n ~ ) .  The periodicity of 
the path is enforced by requiring that xN = xo. The action in this approximation becomes 

and the path integral for the partition function takes the form 
N D / 2  

Z = ("j 2 T E  p = o  
5' dx, e-' ( 9 )  



Stochastic simulation of quantum mechanics 4083 

The corresponding integral for the relevant term in the correlation function is 

In applying (2) to the discrete version of the path integral it is inconvenient to vary 
T by varying N with fixed E, even though in some ways this is the most natural 
approach. Instead we rescale E + A E  and then we find 

with 

This gives 

The term in curly brackets above is the discrete version of H,; the Euclidean energy 
density operator. That is 

(14) 

Note that the expression for the ground state energy has a contribution, the first term 
in the integrand of (13): that is divergent in the limit E +O.  Its presence is due to the 
normalization factor in the definition of the path-integral [7]. The ground state energy 
is thus the difference between two terms both of which are large in the limit of small 
lattice spacing. This feature does not, in general, augur well for the numerical approach 
since the signal-to-noise ratio of such a difference of large numbers is likely to be 
much less than that of each of the two terms individually. Fortunately, in this case the 
problem is not serious. We can see why by examining the case of a free particle. We have 

m 
2E Hp= - - (xp+ ,+xp) ’+  V(Xp)&. 

where S,=I, ( m / 2 ~ ) ( x , , + ~ - x ~ ) ~ .  Clearly the divergence arises from the integral of the 
kinetic term over the Wiener measure. This will also be true in (13). In the interacting 
case the potential generates important corrections but these remain finite in the limit 
E + 0. For large N a numerical evaluation of this integral will give a very good estimate 
of the divergent term since it is given by the average of the results from N identical 
gaussian integrals. The error consequently drops like N-’” which for fixed E corre- 
sponds to T-’/’. This analysis extends to the full calculation of Eo since the signal is 
the average of a local operator over the whole lattice and so the full error also drops 
like N-’/’. This error is, of course, also reduced by the usual statistical factor equal 
to the square-root of the number of statistically independent evaluations, C, of the 
energy operator. The overall error is thus reduced by a factor ( N C ) - ” * :  NC is 
essentially the number of independent lallice site updates (in our case a typical value 
is of order lo6). Since the errors are expected to he small the divergent term may be 
subtracted to give an accurate estimate for the ground state energy, Eo. In  practice we 
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reduce the error yet further by measuring E,, relative to the ground state energy, Eh”, 
of a particle in a harmonic-oscillator potential. By performing a simulation of the 
harmonic-oscillator model in parallel with the original simulation using the same 
random numbers we can minimize the effect of statistical fluctuations on our estimate 
of the ground state energy. 

S M Catterall et al 

The parameters of the harmonic-oscillator model are chosen so that EL0’= Eo.  Because 
the estimates of the divergent pieces in both terms depend on  the same random numbers 
the cancellation is more accurate than that the result of subtracting the divergence by 
hand. 

T h e  discrete version of the Green function which reveals the excitation PE is 

Gr,ab ( ( x , ) a ( x o ) b ? c  = ((X,)r(XO)b)-((X,).)((Xg)b). (17)  
In fact considerable improvement in statistics can be obtained by replacing x, in this 
correlator by the extended operator X. where 

3. The Langevin method 

The energies and correlation functions of the quantum system are evaluated as expecta- 
tion values over the distribution function e-’. We realize this distribution numerically 
by producing sample configurations from the Langevin updating scheme introduced 
by Parisi [ 1 - 4 ] .  This amounts to integrating the stochastic differential equation [ 9 ]  

where T is the artificial Langevin time variable, W ( T )  is a white noise process satisfying 

( ( W r ) a ( T ) ( w s ) b ( T ’ ) )  = 2 a r $ o b ~ ( 7 - 7 ’ )  ( 2 2 )  

and 

The simplest discrete algorithm for carrying out this integration numerically is 

Ax, = U , ( X ) A T + ( ~ A T ) ’ / * ~ , .  (24)  
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The components of the vectors q, are independent Gaussian random numbers of zero 
mean and unit variance. The samples making up the numerical ensemble are obtained 
by first equilibrating the system and then selecting a configuration for measurement 
at appropriate intervals in r. The above updating algorithm realizes the required 
distribution to within an error of O(A7). 

In order to obtain better control over the systematic errors we use a higher-order 
Runge-Kutta type algorithm [3,4] which realizes the distribution with an errorO(A7'). 
Such an algorithm involves an intermediate configuration x("= x+ Ax'" specified by 
the equation 

Ax!"= Ur(x)A7/2+ (A7)'12q!11, (25)  

The complete updating step is given by 

Ax, = U,( x('))A r + ( A r  ) ' I2 (  q J' + q !") (26) 

when qy) and q!2) are vectors with components that are independent Gaussian random 
numbers with zero mean and unit variance. 

The above algorithm acts locally on the (one-dimensional) spacetime lattice. This 
has the result that the update acts more quickly on short wavelength modes than on 
long wavelength ones with a consequent retardation of both the full equilibration of 
the system and the statistical decorrelation of successive configurations. The remedy 
was given by Batrouni et a /  [SI. We update in Fourier transform space rather than 
configuration space and arrange for the longer-wavelength modes to receive an update 
enhanced relative that applied to the short wavelength modes. For the first-order update 
represented by (24) the modification of Fourier acceleration is simple. We define the 
Fourier transform variable fk for - N I 2  < k s N / 2  to be 

1 N-I 

(27) 2 n i k r l N  

j k  =E ,go e- x, . 

Note that because the original variable x, is real we have 

i - k  = i t  (28) 
which implies that jo and X N , 2  are real. We can define similarly a Fourier transform 
version vjr of the random step q, with the same reality properties as ik. 

The first-order update becomes 

A j k  =f( k )  Uk(x)P7+ (2f   AT)"'% (29) 

where 
1 N+I 

2 n i k r l N ~  U k ( x ) = -  e- s ) m r - 0  

and where f ( k )  is a function of the wavenumber k which is weighted towards small 
values of k The particular choice of f(k) made in this paper is based on intuition 
from the harmonic oscillator case. It is 

f ( k )  = (L(N/2)+112) / (L(k)+112)  (31) 

where 
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The quantity L ( k )  is the Fourier transform version of the Laplacian on the lattice. The 
value of the mass p is chosen on the basis of computational experience but is related 
in size to the excitation energy of the system. The results are not idependent on the 
precise value of p. 

S M Cattern// et a/ 

The steps in the update are as follows. 
(i) Starting with the current value of f, we invert the Fourier transform to 

(ii) From x, we compute U , ( x )  and then use (30) to obtain &(x). 
(iii) The updating formula in (29) is now used to obtain the new value of 4. 
Clearly it is necessary at each stage to pass from the Fourier transform X, to x, and 

from U , ( x )  to its Fourier transform &(x). These steps are carried out by means of 
an effective fast Fourier transform algorithm. 

The Fourier accelerated version of the second order algorithm is a natural general- 
ization of the above, namely 

obtain x,. 

(33) A j U L  Ir - f ( k )  .!7,(x)A7/2+ (f( .k)A~)"*Gt).  

A i k  =f(k)u,(x'1))AT+(f(k)A7)"2(Gt)+ vjp)). (34) 

The final step is given by 

vi course we must invoke the iast Fourier transform aigorithm in performing these 
steps in the simulation [lo]. 

4. Slave equations 

An attractive feature of the Langevin method is that it can be extended by means of 
slave equations [2,4] to yield directly an estimator for the connected part of any 
correlation function. In the present case we are interested in the correlation function 

the asymptotic behaviour of which yields the value of the energy gap AE. The 
slave equation for this estimator can be derived by first modifying the action by the 
addition of a term J .  X,, (see (18)). That is 

S+ S, = S+ J .  X,. 
We exploit the fact [ l ,  2,4] that 

(35) 

where (. . .)c means the connected part of the corresponding correlator and it is being 
assumed that the averages are evaluated with the modified action S,. It follows that 
the quantity g,,ab = J(x,),/JJ, is an estimator for the above connected correlation 
function. 

For non-zero J the langevin equation for x, is modified by replacing S by S,. We 
have 

where 
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That is 

U : ( x ) =  U , ( x ) + J ,  (39) 
where J .=s ,J  and s, = 1/M for O s r <  M and is zero otherwise. The equation of 
motion for &ab can be obtained by differentiating (37) with respect to Jh. We find 

This is the continuous time version of the slave equation for 9r,.b. Note that the white 
noise term is not present. Its influence is felt, however, through its effect on ~(7). 

The discrete time version is obtained by applying the same approach to the discrete 
updating algorithms for x,. The relevant case for us is the second-order algorithm. In 
the unaccelerated form we find for the intermediate step 

\ 

(41) 
c3 1 N-l  

(ur)a&,cb + S&b) A 7 / 2 .  Ag"' - 
- (Lo  ; ao, 

For the final step we have 

where the superscript (1) indicates that the quantity has been evaluated at the intermedi- 
ate point. The Fourier accelerated version is obtained by taking the Fourier transform 
of these equations and modifying the time step so that it depends on the wavenumber 
as discussed in the last section. We have for the intermediate step 

where 

and 

The final step is 

Here the superscript (1) has the same significance as before indicating a quantity 
evaluated at the intermediate point. 

Finally we construct the estimator for It is 
M+,-l 

1 g,.b/M. (47) 
v = r  

5. Diagonalization of the Hamiltonian 

In order to have a basis for comparing the Langevin method with more conventional 
methods for potential problems we considered an evaluation of the energy levels as 
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the eigenvalues of an appropriate Hamiltonian matrix. For the present problem the 
natural form for such a matrix is obtained by creating a grid of sufficient extent and 
density in the position space of the particle. For the one-dimensional system we have 

v+v_+ V(X)S,, 1 
2m 

H, ,=  -- 

where the points x lie on the grid at a separation LI and V* are the forward and 
backward difference operators on the spatiai grid. We have 

\ -2 1 0 . . '  
1 -2 1 " '  

I 
1 -2 j l  

(49) 

Because this matrix is tridiagonal it is possible to compute its eigenvalues very 
efficiently by an algorithm based on a Sturm sequence method [6] for solving for the 
zeros of the characteristic polynomial. In practice we were able to obtain a 1% level 
of accuracy by using a grid of 1000 points with a separation a = 0.1. Some of the results 
are quoted in table 1. 

Table 1. Results for the ID anharmonic Oscillator. The potential is V ( x )  = ax2+ bx4. The 
theoretical results are from a S t u m  sequencing evaluation of the eigenvalues. 

(I b E. A E  E:: A E ' ~  

0.0 I .o 0.666 10.003 1.720-tO.002 0.668 1.726 
0.0 2.0 0.8364+0.004 2.162h0.005 0.842 2.174 
0.0 11.0 1.438 + 0.002 3.805+0.08 1.486 3.837 
0.5 1.0 0.8029+0.0002 1.928+0.002 0.804 1.934 
0.5 10.0 1.460+0.002 3.781 +O. l  1.372 3.617 

-0.5 !.O 0.5!!+0.002 1.502 f 0.992 0,515 1.506 
-1.0 1.0 0.334h0.002 1.271+0.003 0.338 1.275 
-2.0 1.0 -0.136-tO.002 0.784h0.03 -0.130 0.791 
+2.5 1.0 -0.469+0.002 0.547 -t 0.03 -0.460 0.558 
-3.0 1.0 -0.909+0.002 no convergente -0.895 0.352 

For higher dimensions D the attainment of comparable accuracy requires the use 
of a matrix of size lOOOD x 100OD. Not only does this rapidly become formidably large 
but it does not have the simple tridiagonal shape of the one-dimensional problem thus 
precluding the straightforward application of the Sturm sequencing method for finding 
the eigenvalues. We were not able to obtain conveniently, acceptable results for these 
higher-dimensional problems using the Sturm sequencing method. 

6. Numerical simulation 

In applying the above algorithm we used a lattice length N = 256, a lattice spacing 
E = 0.1, a Langevin time step in the range AT = 0.001 to 0.004 and an interval between 
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measurements of IO iterations. since correlations between results appeared to persist 
for about 10 measurements, the Langevin correlation time for measurements was 
roughly rc.,=0.4. The precise value is sensitive to the value of the acceleration mass 
parameter which was chosen to be +'=4.0 so as to he comparable with the first 
excitation energies of the systems that we investigated. The lattice was equilibrated 
for 1000 iterations before measurements were begun. 

The computer we used was an AMT DAP 610 which because of its highly parallel 
architecture allowed us to update 16 independent lattices simultaneously. The statisticai 
errors quoted are based on the following numbers. 

Dimensions number of iterations CPU time (5) 

1 10000 3300 
2 7 000 6130 
3 6 000 9940 

In order to assess the significance of times for the above runs we note that the 
DAP 610 runs at approximately 40 M flops. 

7. Numerical results 

The particular form of the anharmonic potential we used was in one dimension, 

V ( x )  = ax2+ bx4 (50) 

and in two and higher dimensions, 

V ( x )  = ax2+ b(.r*)'+ c x: 

The results of the simulation for a one-dimensional oscillator are shown in table 
!  here !hey ive compared wi!h the resu!ts of Sturm sequencing, The two sets of figures 
agree to within 1% for most choices of the parameters in the potential except perhaps 
for some of the larger values of these parameters. The discrepancy is very probably 
due to the size of the lattice spacing. 

The two-dimensional oscillator results are shown in table 2. Here the theoretical 
results are inferred from the analytical results of Hioe et a /  [ 111. Again the correspon- 
dence between simulation and theory is quite acceptable although there is again an 
understandable tendancy to show discrepancies for the larger values of the parameters. 
In three dimensions we were unable to find theoretical results with which to compare 
those of our  simulation. The results, however, show acceptable scaling properties in 
the coupling b or c when the other two couplings are zero. In each case we expect 
the result to behave as b'" or c'". The results of this scaling prediction are shown in 
the theory column of table 3 and are quite reasonably consistent with those of our 
simulation. 

It should be remarked that the Green functions 9 , ,a , ( f ) ,  from which the values of 
B E  were extracted, in all cases fitted a simple exponential form very well for t > 2, 
and the numerical errors on these functions were too small to be discernible in graphical 
plots of 9. 
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Table 1. Results for the 20 anharmonic oscillator. The potential is V ( r ) = a r i +  
h(r ' )*tcZixf .  The theoretical results are based on those of Hioe e! of. *means that 
appropriate scaling has been applied4o compute the results and tmeans that scaling and 
interpolation has been used. 

0.0 1.0 1.0 1.765*0.002 2.27910.004 1.780t 2.311t 
0.0 1.0 5.0 2.415i0.004 3.203=0.01 2.478t 3.340t 
0.5 0.0 1.0 1.595iO.002 1.927 10.003 1.6075 1.9342 
0.5 0.0 i.0 I.UO*U.UUL i . i i 9  +O.OGi  l.j370* i.ii64' . .-, , - ̂ ^^  

-0.05 0.0 1.0 1.023i0.0008 1.5 I O  10.003 
-1.0 0.0 1.0 0.66810.0008 1.28010.003 
-2.0 0.0 1.0 -0.27310.002 1.92610.002 

0.0 1.0 0.0 1.46710.002 1.92610.002 1.478' 1.9217- 
0.0 5.0 0.0 2.48610.003 3.442*0.005 2.5274' 3.2860* 

-0.5 1.0 0.0 !.!96*0.00! 1.730 +O.OOZ 
+1.0 1.0 0.0 0.891~0.001 1.531 10.003 

Table 3. Results for the 3~ anharmonic Oscillator. The potential is V(x)=ar'+ 
h(x2)2+cX,xf.  The theoretical results are based on a scaling law. 

0.5 0.0 1.0 
0.5 0.0 5.0 
0.0 0.0 1.0 
0.0 0.0 2.0 
0.0 0.0 4.0 
0.0 0.0 10.0 

0.0 1.0 0.0 
0.0 5.0 0.0 

-0.5 1.0 0.0 
-1.0 1.0 0.0 

2.391 iO.005 
3.593 i 0.007 
1.9R5 10.005 
2.497 10.003 
3.13610.002 
4.172 1 0.007 

2.370i0.003 
4.028 10.005 

2.006+0.002 
1.596 f 0.002 

1.925 3= 0.003 
3.041 10.02 
1.716 1 0.004 
2.178+0.003 2.500 2.162 
2.725i0.006 3.151 2.724 
3.70210.05 4.276 3.697 

2.086i0.002 
3.61?* 4.05 3.56 

1.915 10.002 
1.738 + 0.003 

8. Conclusion 

We have applied a second-order Fourier accelerated Langevin method to the evaluation 
of the energies of the ground states and first excited states of various versions of the 
anharmonic oscillator. We found it easy to achieve accuracies of 1%. For the case of 
the one-dimensional oscillator the Langevin method was not as efficient as one based 
on Sturm sequencing. However, this latter method becomes rapidly less and less possible 
as the dimension of the oscillator increases. Already in two dimensions it involves 
matrices of formidably high dimension and complexity of structure to achieve compar- 
able accuracy. The Langevin method therefore can be expected to be useful for problems 
in several dimensions such as those involving a number of particles. The method is 
particularly well suited to cases where the potential is not spherically symmetric, such 
as the potentials that occur in typical crystalline environments. 

There are of course circumstances where the method for calculating the energy gap 
DE can he expected to encounter difficulties, In general these are situations where DE 
to the first excited state is anomalously small, Such a situation can arise in one dimension 
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where a, the coefficient of the quadratic term in the potential, is large and negative 
which results in a double well that allows only weak penetration of the harrier between 
the wells. The resulting energy gap between the symmetric ground state and the 
antisymmetric excited state is exponentially small in the barrier penetration factor. In 
the Langevin formalism this problem shows up in the existence of ‘kink-type instanton 
solutions which are stationary points of the action. It turns out that in the neighbourhood 
of such solutions there are configurations which give rise to negative eigenvalues for 
the matrix J4 in (44). This can result in an uncontrollable instability of the siave 
equations with a consequent breakdown of the method. General considerations show 
that the problem is worst when there is one kink and one antikink on the lattice which 
occurs for barriers of intermediate height. For very high barriers the probability of 
finding a kink is very small (there is virtually no tunnelling during the lifetime of the 
simulation). For relatively low barriers there are many kink-antikink pairs on the 
iattice ana the tunneiiing is weii simuiated. i n  higher dimensions this situation does 
not arise so easily in the anharmonic oscillator potentials we have considered since 
barriers of the kind encountered in one dimension are not so readily constructed. For 
example, in two dimensions the Mexican hat potential has a stationary point on the 
peak but the lifetime in the simulation of any configurations with lattice fields on or 
near the peak is very short: there are no stabilizing topological constraints preventing 
the decay of such configurations to  more likely ones which lie mainly around the brim. 
Hence in more than one dimension where our method is most applicable the instabilities 
associated with instanton configurations are much less likely to  occur. It should finally 
be emphasized that these instabilities affect the measurement of P E  only, and in all 
circumstances and in all dimensions studied the evaluation of the ground state energy 
suffered no such instability. 
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